Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	$\mathrm{Mg}(\mathrm{g}) \rightarrow \mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$ ALLOW $\mathrm{Mg}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{+}(\mathrm{g})$ Mg^{2+} Loss of electron to form $\mathrm{Mg}^{+} \quad$ (1) IGNORE (g) sign on electron State symbols ALLOW Provided the equation involves magnesium, even if electron is added to the wrong side.	(2)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b)}$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$		(1)
	ALLOW Capital s and/or p, subscripts $2 p_{x}{ }^{2} 2 p_{y}{ }^{2} 2 p_{z}{ }^{2} 3 p_{x}{ }^{1}$ $3 p_{y}{ }^{1} / 3 p_{z}{ }^{1}$ for $3 p_{x}{ }^{1}$		

Question Number	Acceptable Answers	Reject	Mark
* 1(c)((d))	Mg to Al: Electron removed from Al is from a higher energy level (3p rather than 3s) ALLOW Electron removed in Al is (more) shielded (by 3s) IGNORE Outer electron is further from nucleus Full sub-shell is more stable than part filled sub-shell MP2 Al to Si: Si has one more proton than Al/ has greater nuclear charge, and electrons removed in both cases are 3p / same sub-shell / are equally shielded MP3 EITHER The attraction of the extra proton in Al is less than the effect of the higher energy level/ the shielding OR Electron removed from Si is closer to nucleus (than Al) ALLOW Silicon is smaller in size		(3)

Question Number	Acceptable Answers	Reject	Mark
1(d)	Four x round Si sharing one - with each Cl Seven • round each Cl sharing one x with each Si $\begin{aligned} & : C_{x}^{C L}: \\ : \ddot{C}_{C} \times & S_{i} \times C_{C}: \\ & : C_{C L}: \end{aligned}$ ALLOW Reversed symbols		(2)

Question Number	Acceptable Answers	Reject	Mark
1(e)(ie) ${ }^{\text {l }}$	I- / anion becomes distorted / not spherical. May be shown in a diagram MP2 Mg^{2+} has high(er) charge and small(er) radius/ Mg^{2+} has high charge density MP3 Bonding in magnesium iodide has some covalent character OR Orbitals of Mg^{2+} and I^{-}overlap/ Mg^{2+} shares some of the I^{-} electrons OR Mg^{2+} and I^{-}ions are not completely separate	I odine becomes distorted Just "electrons in outer shell are attracted" Atoms of Mg have a small (atomic) radius	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (e) (i i)}$	Experimental/ Born Haber cycle and theoretical/ calculated lattice energies are different	Just "Compare Experimental/ Born Haber cycle and theoretical/ calculated lattice energies" Experimental/ Born Haber cycle lattice energy is more exothermic/ more negative than theoretical/ calculated lattice energy	(1)
ALLOW Greater for more negative IGNORE Comments about melting temperature	Use of electron density map		

(Total for Question = 15 marks)

Question Number	Acceptable Answers		Reject	Mark
$\mathbf{2 (a)}$	(Protons)	$\mathbf{1 8}$		$\mathbf{1}$
	(Electrons)	$\mathbf{1 8}$		
	(Neutrons)	$\mathbf{2 2}$		
	All three numbers correct for the mark			

Question Number	Acceptable Answers	Reject	Mark
2(b)	(Position in the Periodic Table) depends upon atomic number / proton number OR Ar (atom) has (one) fewer proton(s) (than K atom) OR K (atom) has (one) more proton(s) (than Ar atom) OR K has atomic number 19 (whereas) Ar has atomic number 18 OR Ar has 18 protons, K has 19 protons		1
	IGNORE 'Elements are not arranged in order of (relative) atomic mass'		
	IGNORE Mention of numbers of electrons / numbers of shells (of electrons)		

Question Number	Acceptable Answers	Reject	Mark
2(c)	First mark Property / trend / pattern ALLOW Any named property (e.g. atomic radius, ionization energy, melting temperature)		(1)
	Second mark Repeated (across each period) OR Regular (across each period) OR Re-occurring (across each period)		
NOTE Statement such as: "A repeating trend across a period / across each period" scores (2)			

Question Number	Acceptable Answers	Reject	Mark
2(d)(i)	Phosphorus / P/ P4 OR Sulfur / S / S8 OR Chlorine / Cl / Cl 2 IGNORE Argon / Ar		1

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	(The covalent) bonds are strong (throughout the lattice) (therefore) a lot of energy is required to break the bonds / a lot of energy is needed to overcome the attractions (between atoms) / 'more energy' is required to break the bonds /'more energy' is needed to overcome the attractions (between atoms) / 'greater amount of energy' is required to break the bonds /'greater amount of energy' is needed to overcome the attractions (between atoms)	MENTION OF ANY OF THE FOLLOWING SCORES (0) OVERALL '(simple) molecular silicon’ (0) 'molecules of silicon' (0) 'silicon has ions' / ‘silicon is ionic' (0) 'intermolecular forces' / 'van der Waals' forces' / 'London forces' / 'forces between the molecules' (0) 'metallic bonding' (0)	2

Question Number	Acceptable Answers	Reject	Mark
2(d)(iii)	ALLOW reverse arguments in each case Any two from four:- - magnesium ions / magnesium atoms are smaller (than sodium ions / sodium atoms) NOTE: Allow symbols (e.g. Mg or Mg^{2+}) - magnesium ions are Mg^{2+} whereas sodium ions are Na^{+} OR Mg^{2+} / magnesium ions have a larger charge (density) (than Na^{+}/ sodium ions) [NOTE: It follows that the statement that " Mg^{2+} ions are smaller than Na^{+}ions" would score the first two scoring points above] - magnesium has more delocalised electrons (than sodium) IGNORE 'free electrons' IGNORE just 'sea of electrons' \bullet magnesium is close-packed (but sodium is not close-packed) Third mark (stand-alone): - more / a lot of (heat) energy is needed to break (metallic) bonds in Mg (than in Na) OR - attraction between the positive ions and (delocalised) electrons is stronger in magnesium (than in sodium)	attraction between nucleus and (delocalised) electrons (no third mark) mention of intermolecular forces / molecules (no third mark)	3

	IGNORE Just 'metallic bonding in Mg stronger than that in Na'	ionic bonding (no third mark) attraction between Mg ${ }^{2+}$ ions (no third mark) NOTE: arguments based on ionization energies scores $\mathbf{(0)}$ overall
	OR any suggestion of removal of outer shell electrons as part of the melting process scores (0) overall	

(Total for Question = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	B acceleration	(1)	B just electric field

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$\begin{align*} & \left(\mathrm{A}_{\mathrm{r}} \text { for } \mathrm{K}\right)=(39 \times 0.9322)+(40 \times \\ & 0.0012)+(41 \times 0.0666) \text { or } \mathrm{a} \\ & \text { correct fraction using percentages } \tag{1}\\ = & 39.1344=39.13 \tag{1} \end{align*}$ Correct answer without working scores 2 Max 1 if not to 2 decimal places Second mark dependent on first IGNORE Units of any kind (e.g. ' g ', 'g mol ${ }^{-1}$, 'amu', etc.)		2

Question Number	Acceptable Answers			Reject	Mark	
$\mathbf{3 (a) (i i i) ~}$						1
	Isotope	Electrons	Protons	Neutrons		
	${ }^{39} \mathrm{~K}$	19	9	20		
	${ }^{41} \mathrm{~K}$	19	9	22		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a)}$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$ (iv) Fully correct		1
	Ignore additional $1 s^{2}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (v)}$	(Position in the Periodic Table) depends upon atomic number / proton number OR Ar (atom) has (one) fewer proton(s) (than K atom) OR K (atom) has (one) more proton(s) (than Ar atom) OR K has atomic number 19 (whereas) Ar has atomic number 18 OR Ar has 18 protons, K has 19 protons IGNORE 'Elements are not arranged in order of (relative) atomic mass' IGNORE Mention of numbers of electrons / numbers of shells (of electrons) IGNORE Arranged in vertical groups in accordance to properties / argon is a noble gas	1	

Question Number	Acceptable Answers	Reject	Mark
3(a) $\mathbf{(v i)}$	One fewer shell of electrons (1) Electrons in the ion are held more tightly OR Same number of protons attracting fewer electrons OR Less repulsion between (remaining) electrons	2	
IGNORE References to effective nuclear charge / charge density	(1)		

Question Number	Acceptable Answers	Reject	Mark
3(b)	Regular lattice of singly-positively charged (potassium) ions Delocalised electrons / sea of electrons / mobile electrons e.g. Accept other regular arrangements Unlabelled diagram max (1)		2

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	First mark:- Makes mention of energy/enthalpy/(heat) energy/heat (change) AND to remove an electron Second mark: one mole/ 1 mol Third mark: Makes mention of gaseous atom(s) ALTERNATIVE ANSWER Energy change per mole for $\begin{equation*} X(g) \rightarrow X^{+}(g)+e^{(-)} \tag{1} \end{equation*}$ One mark for species One mark for correct state symbols Mark independently IGNORE any references to standard conditions	"Energy given out..." for first mark J ust 'gaseous element'/ 'gaseous substance'	3
Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	Potassium is E Alkali metals always have the lowest first ionization energy in their period OR It follows a noble gas/ an element with very high first ionization energy OR Ionization energy falls (significantly) at the start of a (new) period / Ionization energy falls (significantly) after D		2

Total for Q19 = 16 marks

Question	Acceptable Answers			Reject	Mark
4(a)					2
	Isotope	${ }^{131} I_{53}$	$\left.{ }^{127}\right\|_{53}$		
	Number of protons	53	53		
	Number of neutrons	78	74		

Question Number	Acceptable Answers	Reject	Mark
4(b)	$\text { Xenon / Xe / }{ }_{54} \mathrm{Xe} / \mathrm{Xe}_{54} /{ }^{\substack{134}} \times \mathrm{Ke}$	Anything else including: ${ }^{130} \mathrm{Xe}_{54}$ Xe^{-} Iodine / I with or without numbers Hydrogen / H with or without numbers Te	1

Question Number	Acceptable Answers	Reject	Mark
4(c)	Potassium iodide / KI	HI KI_{3} Wrong formulae $^{\text {like }}$CaI, MgI iccept any soluble, non-toxic iodide or Wrong name like calcium idodate BaI_{2} (toxic) Agl (insoluble) Potassium iodine	
	Wrong name, correct formula (0)	Correct name, wrong formula (0)	

Question Number	Acceptable Answers	Reject	Mark
4(d)	Country /ALLOW state and justification Both needed for one mark e.g. Japan / New Zealand / California etc Country / state at risk from Earthquake / tsunami / flooding Further examples: Italy with volcanoes Afghanistan / middle eastern / African countries terrorist / (nuclear) weapon threat / war zone / political instability / abuse of nuclear power. USA /America / Jamaica etc risk of hurricane / tornado California San Andreas fault	...population density	$\mathbf{1}$
...landslide	...too hot	...surrounded by other countries	Antarctica

Total for Question = 13 Marks

Question	Acceptable Answers					Reject	Mark
5(b)	$\mathrm{AsH}_{3} / \mathrm{H}_{3} \mathrm{As}$ $\mathrm{H}_{2} \mathrm{Se} / \mathrm{SeH}_{2}$ IGNORE charges ALLOW upper case / large S in arsenic NOTE: If two or more answers given for one element mark that element on a plus minus basis					SE for Selenium	2
Question Number	Acceptable Answers					Reject	Mark
5(c)(i)	 One mark for each row Arrows may be half-headed Arrows must be in same direction if in singly occupied boxes (can be down) ALLOW two arrows for Se in any $4 p$ box Selenium two arrows must show opposite spins						2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (c) (i i)}$	For parts c(ii),d and e it is important to keep in mind the two elements involved in each part As and Se First mark: EITHER In Se, (spin) pairing has occurred (for the first time in that p sub-shell) OR electron removed from orbital containing two electrons ALLOW sub-shell for orbital	$\mathbf{2}$	
	(1) Second mark: EITHER (Increase in) repulsion (so electron lost more easily) OR Half-filled (sub-) shell/allow orbital (particularly) stable (in As) ALLOW orbital for sub-shell Mark each point independently IGNORE reference to distance from nucleus and shielding		

Question Number	Acceptable Answers	Reject	Mark
5(d)	Se and Kr First mark: ElTHER The nuclear charge is increasing (Nuclear must be stated or clearly implied) OR number of protons / atomic number is (1) increasing	$\mathbf{2}$	
	Second mark: (Outermost) electron closer to nucleus / electron is removed from the same (sub)shell / electron experiences similar shielding / (atomic) radius is smaller/ smaller atom	(1)	Molecule (unless monatomic)
ALLOW reverse arguments for selenium			
IGNORE Kr has full outer shell			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (e)}$	Kr and Rb Any two from: The electron (in Rb) (removed) is further from the nucleus (1) The electron is in a higher / new / another / 5s (energy quantum) shell / (1) energy level More shielded IGNORE any reference to stability of (1) krypton or larger atomic radius of Rb / full outer shell of Kr It is possible that two answers may be offered together in one sentence e. Rb outer electron is in another shell further from nucleus (2)	$\mathbf{2}$	
Question Number Acceptable Answers Reject Mark $\mathbf{5 (f)}$ Krypton / Kr			

Total for Question = 13 Marks

